EXTREMAL METRICS AND MODULUS

I. Anić, M. Mateljević, Beograd, and D. Šarić, New York

(Received March 31, 1998)

Abstract

We give a new proof of Beurling's result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem.

Our approach is influenced by Gehring's work in \mathbb{R}^{3} space. Also, some generalizations of Gehring's result are presented.

Keywords: extremal distance, conformal capacity, Beurling theorem
MSC 2000: 30A15, 30C85

InTRODUCTION

Beurling proved the following result (see Ahlfors [1]):

Theorem 0.1. (Beurling's theorem) Let Ω be a region in the complex plane bounded by a finite number of analytic Jordan curves, let E_{0} and E_{1} be disjoint and consist of a finite number of closed arcs or curves in the boundary of Ω. Then the extremal distance $d_{\Omega}\left(E_{0}, E_{1}\right)$ is the reciprocal of the Dirichlet integral

$$
D(u)=\iint_{\Omega}\left(u_{x}^{2}+u_{y}^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

where u satisfies
(i) u is bounded and harmonic in Ω,
(ii) u has a continous extension to $\Omega \cup E_{0}^{\circ} \cup E_{1}^{\circ}$, and $u=0$ on E_{0} and $u=1$ on E_{1}, (iii) the normal derivative $\frac{\partial u}{\partial n}$ exists and vanishes on $C_{\circ}(C$ denotes the full boundary of $\Omega, C_{\circ}=C-\left(E_{0} \cup E_{1}\right)$, and E_{0}° and E_{1}° denote the relative interiors of E_{0} and E_{1} as subsets of C).

The proof is based on two important ingredients:

1) existence of a solution of a mixed Dirichlet-Neuman problem (we denote it by u),
2) decomposition of the domain to rings and quadrilateral subdomains using, in fact, the orthogonal and vertical trajectories of the quadratic differential defined by u.

For the theory of trajectories of holomorphic quadratic differentials see Gardiner [7] and Strebel [5].

Our first purpose was to give a more elementary proof of this result (that is, with no use of these two subjects), using a minimizing sequence (see for example Courant's book [6]), and to derive some equalities not contained in the proof of Beurling's theorem.

During our work on this problem we became aware of Gehring's papers ([2], [3]), which strongly influenced our research.

In [2] and [3] Gehring proved that Väisälä's definition of extremal distance between E_{0} and E_{1} in Ω (see [9]) is essentially equivalent to Dirichlet's integral definition due to Loewner (see [10]) if Ω is a ring domain in \mathbb{R}^{3}, and E_{0} and E_{1} are boundary components of Ω (cf. also [4]). Gehring used this result to study quasiconformal mappings in space.

We generalize this result to the setting of smooth domains in \mathbb{R}^{n}. An application of this result gives a short proof of Beurling's Theorem.

As we understand, there are additional technical difficulties if we work with general domains instead of ring domains. Because of that, we need Lemma 2.1.

1. Notation

Definition 1.1. Let Ω be an open set in \mathbb{R}^{n} and Γ a set whose elements γ are rectifiable arcs in Ω. Let ϱ be a nonnegative Borel measurable function in Ω (such ϱ we will call a metric). We can define the ϱ-length of γ by

$$
L(\gamma, \varrho)=\int_{\gamma} \varrho|\mathrm{d} x|,
$$

the ϱ-volume of Ω as

$$
V(\Omega, \varrho)=\int_{\Omega} \varrho^{n} \mathrm{~d} V(x)
$$

where $\mathrm{d} V$ is the n-dimensional Lebesgue measure in \mathbb{R}^{n}, and the minimum length of Γ by $L(\Gamma, \varrho)=\inf _{\gamma \in \Gamma} L(\gamma, \varrho)$. The modulus of Γ in Ω is defined by $\bmod _{\Omega}(\Gamma)=\inf _{\varrho} \frac{V(\Omega, \varrho)}{L(\Gamma, \varrho)^{n}}$ where ϱ is subject to the condition $0<V(\Omega, \varrho)<\infty$. The extremal length of Γ in Ω is defined as $\Lambda_{\Omega}(\Gamma)=\bmod _{\Omega}(\Gamma)^{\frac{1}{1-n}}$.

Definition 1.2. Let Ω be an open set in \mathbb{R}^{n}, and let E_{0}, E_{1} be two sets in the closure of Ω. Take Γ to be the set of all connected arcs in Ω which join E_{0} and E_{1}, i.e. each $\gamma \in \Gamma$ has one endpoint in E_{0} and one in E_{1}, and all other points of γ are in Ω. The extremal length $\Lambda(\Gamma)$ is called the extremal distance of E_{0} and E_{1} in Ω, and we denote it by $d_{\Omega}\left(E_{0}, E_{1}\right)$.

Now, let Ω be a bounded region whose boundary consists of a finite number of C^{1} hypersurfaces, and E_{0}, E_{1} are disjoint, and each is a finite union of closed hypersurfaces contained in the boundary of Ω. Then we define the conformal n-capacity of Ω as

$$
C\left[\Omega, E_{0}, E_{1}\right]=\inf _{u} \int_{\Omega}|\nabla u|^{n} \mathrm{~d} V(x),
$$

where the infimum is taken over all functions $u: \Omega \rightarrow \mathbb{R}$ which are differentiable in Ω, continuous in $\bar{\Omega}$ and have boundary values 0 on E_{0} and 1 on E_{1}.

From now on let Γ be the family of arcs in Ω which join E_{0} and E_{1}.
Definition 1.3. If u is continuous and ACL in Ω, and u has boundary values 0 on E_{0} and 1 on E_{1}, we say that u is an admissible function for the domain Ω with respect to E_{0} and E_{1} and denote it by $u \in \mathrm{E}\left(\Omega, E_{0}, E_{1}\right)$.

2. Extremal distance and conformal capacity

In this section we want to prove that

$$
d_{\Omega}\left(E_{0}, E_{1}\right)=C\left[\Omega, E_{0}, E_{1}\right]^{\frac{1}{1-n}} .
$$

Lemma 2.1. Let f be a metric in Ω and $V(\Omega, f)<\infty$. Then there exists a neighborhood U of $\partial \Omega$, a metric \tilde{f} on U, and a diffeomorphism A of U onto itself such that
i) $\tilde{f}=f$ on $U \bigcap \Omega=U^{\prime}$,
ii) A is the identity on $\partial \Omega$ and $A\left(U^{\prime}\right)=U^{\prime \prime}$, where $U^{\prime \prime}=U \bigcap \Omega^{c}$,
iii) for every rectifiable curve γ in $U^{\prime \prime}$ we have

$$
L(\gamma, \tilde{f}) \geqslant L(A(\gamma), f)
$$

iv) $V\left(U^{\prime \prime}, \tilde{f}\right) \leqslant K V\left(U^{\prime}, f\right)$, where K is a finite constant,
v) K and U do not depend on f.

Proof. The Tubular theorem (see [8]) yields that there exists a neighborhood U of $\partial \Omega$ such that there exists a diffeomorphism H from U onto $(-1,1) \times \partial \Omega$ and $H(x)=(0, x)$ for $x \in \partial \Omega$. For U small enough, we have for the Jacobian J_{H} of H that $0<m<\left|J_{H}\right|<M<\infty$. Let S be the mapping from $(-1,1) \times \partial \Omega$ onto itself defined as $S((t, x))=(-t, x)$. Define A as $A=H^{-1} \circ S \circ H$. We obtain that $A \circ A=\operatorname{id}$ and $A\left(U^{\prime}\right)=U^{\prime \prime}$. For the Jacobian J_{A} of A we have $\frac{m}{M}<\left|J_{A}\right|<\frac{M}{m}$, and it folows that $\left|A^{\prime}(x)\right|^{n} \leqslant K\left|J_{A}(x)\right|$ for some $K<+\infty$.

Let now x be from $U^{\prime \prime}$. Define $\tilde{f}(x)$ as $\tilde{f}(x)=f(A(x))\left|A^{\prime}(x)\right|$. Then for a rectifiable curve γ in $U^{\prime \prime}$ we have

$$
\int_{\gamma} \tilde{f}(x)|\mathrm{d} x|=\int_{\gamma} f(A(x))\left|A^{\prime}(x)\right||\mathrm{d} x| \geqslant \int_{A(\gamma)} f(y)|\mathrm{d} y|
$$

We also conclude that

$$
\begin{aligned}
\int_{U^{\prime \prime}} \tilde{f}^{n}(x) \mathrm{d} V(x) & =\int_{U^{\prime \prime}} f^{n}(A(x))\left|A^{\prime}(x)\right|^{n} \mathrm{~d} V(x) \\
& \leqslant K \int_{U^{\prime \prime}} f^{n}(A(x))\left|J_{A}(x)\right| \mathrm{d} V(x)=K \int_{U^{\prime}} f^{n}(y) \mathrm{d} V(y)
\end{aligned}
$$

From now on, we suppose that any metric f is defined in some neighborhood of the domain $\bar{\Omega}$ (namely, $\Omega^{*}=\Omega \bigcup U$), and that we have a diffeomorpfism A of each outside boundary strip small enough onto an appropriate inside boundary strip.

Lemma 2.2. Let S_{r} be a spherical surface of radius r, and let f be a metric on S_{r}. Then each pair of points P and Q on S_{r} can be joined by a circular arc $\alpha \subset S_{r}$ such that

$$
\left(\int_{\alpha} f(x)|\mathrm{d} x|\right)^{n} \leqslant \operatorname{Ar} \int_{S_{r}} f^{n}(x) \mathrm{d} \sigma_{r}(x)
$$

where $\mathrm{d} \sigma_{r}$ is the Lebesgue measure on S_{r} and A is a constant depending only on n.
Proof. Let $d(P, Q)=\inf _{\beta}(L(\beta, f))$, where infimum is taken over all circular arcs on S_{r} which join the points P and Q. We suppose that this infimum is positive (the case when it is zero is left to the reader). Then there exists a circular arc α such that $L(\alpha, f) \leqslant 2 d(P, Q)$.

Without loss of generality, we can assume that $r=1$ and $P=(0,0, \ldots, 0,1)$, and denote \mathbb{S}_{1} by \mathbb{S}.

Now we map \mathbb{S} stereographically by p onto $Z=\mathbb{R}^{n-1}$. Then P corresponds to ∞, Q to some point a, and hence we obtain

$$
d(P, Q) \leqslant L(\beta, f)=\int_{\beta} f(x)|\mathrm{d} x|=\int_{\beta^{\prime}} f(y) \frac{2|\mathrm{~d} y|}{1+|y|^{2}}
$$

where β is a circular arc joining P and Q, and $\beta^{\prime}=p(\beta)$. Then β^{\prime} is the straight line joining a and ∞, i.e. $\beta^{\prime}(t)=a+t v$, where $v \in \mathbb{S}^{n-2}=\left\{x \in \mathbb{R}^{n-1}:|x|=1\right\}$ and t goes from 0 to $+\infty$. Hence

$$
d(P, Q) \leqslant \int_{0}^{+\infty} f(y) \frac{2 \mathrm{~d} t}{1+|y|^{2}}, \quad y=a+t v
$$

Integrating with respect to $v \in \mathbb{S}^{n-2}$ and applying Fubini's theorem we conclude

$$
d(P, Q) \leqslant \frac{2}{\sigma_{n-2}} \int_{\mathbb{S}^{n-2}}\left(\int_{0}^{+\infty} \frac{f(y) \mathrm{d} t}{1+|y|^{2}}\right) \mathrm{d} \sigma(v)=\frac{2}{\sigma_{n-2}} \int_{Z} \frac{f(y) \mathrm{d} V(y)}{|y-a|^{n-2}\left(1+|y|^{2}\right)},
$$

where σ_{n-2} is the $n-2$ dimensional Lebesgue volume of \mathbb{S}^{n-2}. By Hölder's inequality we see that the last itegral on the right hand side is majorized by

$$
\frac{A^{\frac{1}{n}}}{2}\left(\int_{Z} f^{n}(y) \frac{\mathrm{d} V(y)}{\left(1+|y|^{2}\right)^{n-1}}\right)^{\frac{1}{n}}=\frac{A^{\frac{1}{n}}}{2}\left(\int_{S} f^{n}(x) \mathrm{d} \sigma(x)\right)^{\frac{1}{n}}
$$

where $\mathrm{d} V$ is the Lebesgue measure in \mathbb{R}^{n-1} and $\mathrm{d} \sigma=\mathrm{d} \sigma_{1}$, and

$$
A^{\frac{1}{n}}=\frac{4}{\sigma_{n-2}} \sup _{a \in Z}\left(\int_{Z} \frac{\mathrm{~d} V(y)}{|y-a|^{\frac{n(n-2)}{n-1}}\left(1+|y|^{2}\right)^{\frac{1}{n-1}}}\right)^{\frac{n-1}{n}}
$$

We leave it to the reader to verify that A is finite.
Then we conclude that $\left(\int_{\alpha} f(x)|\mathrm{d} x|\right)^{n} \leqslant A \int_{S} f^{n}(x) \mathrm{d} \sigma(x)$.
Lemma 2.3. Let β be a rectifiable curve in Ω whose one endpoint A_{0} is in E_{0} and the other A_{1} in E_{1}. Let f be any metric in Ω. Then for each $a>0$ there exists $b>0$ such that, if we translate the curve β by a vector $t,|t|<b$ (notation β_{t}), then

$$
\int_{\beta_{t}} f|\mathrm{~d} x| \geqslant L(\Gamma, f)-a
$$

where Γ is the family of all rectifiable Jordan arcs joining E_{0} and E_{1} inside Ω.
Remark. If we work with a ring domain, where E_{0} and E_{1} are boundary components, then, if there is part of the curve β_{t} outside Ω then β_{t} must intersect the corresponding boundary component, and we can choose the appropriate part of β_{t} which joins components (see [3] and [4]).

As we understand, in general we need an additional consideration because there is a possibility that β_{t} has a part outside Ω without intersection with E_{0} or E_{1}.

Proof. Fix $a>0$ and choose $\varepsilon>0$ such that $\varepsilon=\frac{a^{n} \ln 2}{2^{n} A}$. There exists $b>0$ such that
(i) the distance between E_{0} and E_{1} is greater than $4 b$,
(ii) the diameter of each component of E_{0} and E_{1} is greater than $4 b$,
(iii) $\iint_{|x-y|<2 b} f^{n} \mathrm{~d} V(x)<\varepsilon$ for each $y \in \bar{\Omega}$ (in fact, $\mu(A)=\int_{A} f^{n} \mathrm{~d} V$ is an absolutely continuous measure with respect to the Lebesgue measure),
(iv) the outside boundary strip $V^{\prime \prime}$ is more than $4 b$ thick.

By the Fubini theorem we have

$$
\int_{b<|x-y|<2 b} f^{n}(x) \mathrm{d} V(x)=\int_{b}^{2 b} \frac{d r}{r} \int_{S_{r}} r f^{n} \mathrm{~d} \sigma_{r},
$$

where S_{r} is the sphere of radius r with center at y.
So, then there exists $r_{0} \in(b, 2 b)$ such that

$$
r_{0} \int_{S_{r_{0}}} f^{n} \mathrm{~d} \sigma_{r_{0}} \int_{b}^{2 b} \frac{d r}{r}=r_{0} \ln 2 \int_{S_{r_{0}}} f^{n} \mathrm{~d} \sigma_{r_{0}}<\varepsilon
$$

i.e.

$$
A r_{0} \int_{S_{r_{0}}} f^{n} \mathrm{~d} \sigma_{r_{0}}<\frac{A \varepsilon}{\ln 2}=\frac{a^{n}}{2^{n}}
$$

If we apply the above argument to $y=A_{0}$ then there exists $r_{0} \in(b, 2 b)$ such that

$$
A r_{0} \int_{S_{r_{0}}} f^{n} \mathrm{~d} \sigma_{r_{0}}<\frac{a^{n}}{2^{n}}
$$

Let $B_{0} \in S_{r_{0}} \cap \beta_{t}$ and $T_{0} \in S_{r_{0}} \cap E_{0}$ (these intersections exist because the diameters of β_{t} and the components of E_{0} are greater than $4 b$). Then by Lemma 2.2 we can choose an arc α_{0} on $S_{r_{0}}$ joining T_{0} and B_{0} such that $L\left(\alpha_{0}, f\right)<\frac{a}{2}$.

In a similar way we can find a sphere $S_{r_{1}}$ with center at A_{1} and radius $r_{1} \in(b, 2 b)$, and choose a curve α_{1} which joins the point B_{1} of the curve β_{t} and the point T_{1} on E_{1}, such that $L(\alpha, f)<\frac{a}{2}$.

From the arc $\alpha_{0}+\beta_{t}+\alpha_{1}$ we choose a subarc γ which joins E_{0} and E_{1}. Of course, γ is in Ω^{*} (which is a neighborhood of $\bar{\Omega}$). Every subarc of γ which is not in Ω can be mapped by A to be in Ω (we obtain a new arc γ^{\prime}). Because $\gamma^{\prime} \in \Gamma$ and by Lemma 2.1 we have

$$
\begin{equation*}
\int_{\gamma} f|\mathrm{~d} x| \geqslant \int_{\gamma^{\prime}} f|\mathrm{~d} x| \geqslant L(\Gamma, f) \tag{1}
\end{equation*}
$$

and by (1) we conclude

$$
\begin{aligned}
\int_{\beta_{t}} f|\mathrm{~d} x| & \geqslant \int_{\gamma} f|\mathrm{~d} x|-\int_{\alpha_{0}} f|\mathrm{~d} x|-\int_{\alpha_{1}} f|\mathrm{~d} x| \\
& \geqslant L(\Gamma, f)-\frac{a}{2}-\frac{a}{2}=L(\Gamma, f)-a
\end{aligned}
$$

which yields the desired conclusion.
Proposition 2.1. Under the above conditions we have

$$
\bmod _{\Omega}(\Gamma)=d_{\Omega}\left(E_{0}, E_{1}\right)^{1-n}=\inf _{g} \frac{V(\Omega, g)}{L(\Omega, g)^{n}}
$$

where the infimum is taken over all continuous metrics g in Ω.
Proof. Suppose that $0<a<1$ and f is any metric defined in Ω. Choose b as in Lemma 2.3.

Define g by

$$
g(x)=\frac{1}{m\left(U_{b}\right)} \int_{U_{b}} f(x+y) \mathrm{d} V(y)
$$

where $U_{b}=\{x:|x|<b\}$.
Then g is bounded and continuous. By Fubini's theorem for any $\beta \in \Gamma$ we have

$$
\begin{align*}
\int_{\beta} g|\mathrm{~d} x| & =\int_{\beta}\left(\frac{1}{m\left(U_{b}\right)} \int_{U_{b}} f(x+y) \mathrm{d} V(y)\right)|\mathrm{d} x| \tag{2}\\
& =\frac{1}{m\left(U_{b}\right)} \int_{U_{b}}\left(\int_{\beta_{y}} f(x)|\mathrm{d} x|\right) \mathrm{d} V(y),
\end{align*}
$$

where β_{y} denotes the translation of β through the vector y.
Now Lemma 2.3 implies that $\int_{\beta_{y}} f|\mathrm{~d} x| \geqslant L(\Gamma, f)-a$ for each $|y|<b$, and we have by (2)

$$
\begin{equation*}
L(\beta, g)=\int_{\beta} g|\mathrm{~d} x| \geqslant L(\Gamma, f)-a \tag{3}
\end{equation*}
$$

and if we take the infimum in (3) over all such β, we obtain

$$
\begin{equation*}
L(\Gamma, g) \geqslant L(\Gamma, f)-a \tag{4}
\end{equation*}
$$

Further, by Jensen's inequality we have

$$
\begin{align*}
V(\Omega, g) & =\int_{\Omega} g^{n}(x) \mathrm{d} V(x) \leqslant \frac{1}{m\left(U_{b}\right)} \int_{U_{b}} \int_{\Omega} f^{n}(x+y) \mathrm{d} V(x) \mathrm{d} V(y) \tag{5}\\
& \leqslant \int_{\Omega_{b}} f^{n}(x) \mathrm{d} V(x)=V\left(\Omega_{b}, f\right)
\end{align*}
$$

where Ω_{b} is a b-neighborhood of $\bar{\Omega}$, and, by Lemma 2.1, $V\left(\Omega_{b}, f\right) \rightarrow V(\Omega, f)$ when $b \rightarrow 0$. By (4) and (5) we have

$$
\begin{equation*}
\frac{V(\Omega, g)}{L(\Gamma, g)^{n}} \leqslant \frac{V\left(\Omega_{b}, f\right)}{(L(\Gamma, f)-a)^{n}} \rightarrow \frac{V(\Omega, f)}{L(\Gamma, f)^{n}} \tag{6}
\end{equation*}
$$

when $a \rightarrow 0$. From (6) we easily obtain the desired conclusion.
Proposition 2.2. Under the above conditions we have

$$
\inf _{g} \frac{V(\Omega, g)}{L(\Gamma, g)^{n}}=\inf _{h} \frac{V(\Omega, h)}{L(\Gamma, h)^{n}}
$$

where g is any continuous metric and h is a metric from $C^{\infty}(\Omega)$.
Proof. Since g could be defined in a neighborhood Ω^{*} of $\bar{\Omega}$ then g can be aproximated by nonnegative C^{∞}-functions uniformly in the whole $\bar{\Omega}$. Let $h_{k} \rightrightarrows g$ in $\bar{\Omega}$ when $k \rightarrow \infty, h_{k} \in C^{\infty}\left(\Omega^{*}\right)$. Then

$$
V\left(\Omega, h_{k}\right) \rightarrow V(\Omega, g)
$$

and $L\left(\beta, h_{k}\right) \rightarrow L(\beta, g)$ for all $\beta \in \Gamma$, and also

$$
L\left(\Gamma, h_{k}\right) \rightarrow L(\Gamma, g), k \rightarrow \infty
$$

Hence

$$
\frac{V\left(\Omega, h_{k}\right)}{L\left(\Gamma, h_{k}\right)^{n}} \rightarrow \frac{V(\Omega, g)}{L(\Gamma, g)^{n}}, k \rightarrow \infty
$$

and we have the desired conclusion.
Proposition 2.3. Under the above conditions we have

$$
\inf _{h} \frac{V(\Omega, h)}{L(\Gamma, h)^{n}}=\inf _{u} \int_{\Omega}|\nabla u|^{n} \mathrm{~d} V(x),
$$

where h is any C^{∞}-metric and $u \in \mathrm{E}\left(\Omega, E_{0}, E_{1}\right)$.
Proof. We can define a function m by

$$
m(x)=\inf _{\beta} \int_{\beta} h(y)|\mathrm{d} y|
$$

and u by

$$
u(x)=\min \left(1, \frac{m(x)}{L(\Gamma, h)}\right)
$$

for each $x \in \bar{\Omega}$, where β is any Jordan arc joining x and E_{0} inside Ω. Now, u satisfies the uniform Lipschitz condition and $u=0$ on E_{0} and $u=1$ on E_{1}. Hence, $u \in \mathrm{E}\left(\Omega, E_{0}, E_{1}\right)$ and since $|\nabla u| \leqslant \frac{h}{L(\Gamma, h)}$ a.e. in Ω we have

$$
\int_{\Omega}|\nabla u|^{n} \mathrm{~d} V(x) \leqslant \frac{1}{(L(\Gamma, h))^{n}} \int_{\Omega} h^{n} \mathrm{~d} V(x)=\frac{V(\Omega, h)}{L(\Gamma, h)^{n}}
$$

We have proved the proposition.
Proposition 2.4. Under the above conditions we have

$$
\begin{equation*}
C\left[\Omega, E_{0}, E_{1}\right]=\inf _{u} \int_{\Omega}|\nabla u|^{n} \mathrm{~d} V(x) \tag{7}
\end{equation*}
$$

where the infimum is taken over all $u \in \mathrm{E}\left(\Omega, E_{0}, E_{1}\right)$.
Proof. For $u \in \mathrm{E}\left(\Omega, E_{0}, E_{1}\right)$ one can conclude that u can be extended to a neighborhood Ω^{*} of $\bar{\Omega}$ such that u remains continuous and ACL. We may assume that $|\nabla u|$ is L^{n}-integrable over Ω^{*}. Next fix $0<a<\frac{1}{2}$ and let

$$
v= \begin{cases}0, & \text { if } u<a \tag{8}\\ \frac{u-a}{1-2 a}, & \text { if } a \leqslant u \leqslant 1-a \quad \text { on } \bar{\Omega} . \\ 1, & \text { if } 1-a<u\end{cases}
$$

The set where $a \leqslant u \leqslant 1-a$ is a bounded subset of \mathbb{R}^{n} and lies at a distance b from $E_{0} \cup E_{1}$. Let

$$
\omega(x)=\frac{1}{m\left(U_{c}\right)} \int_{U_{c}} v(x+y) \mathrm{d} V(y)
$$

where $c<b$.
This function is continuously differentiable in Ω and has boundary values 0 on E_{0} and 1 on E_{1}. From (8) we see that v is ACL everywhere and by Hölder's inequality we obtain that $|\nabla v|$ is L^{n}-integrable over each compact set. Hence, we can apply Fubini's theorem to conclude that

$$
\nabla \omega(x)=\frac{1}{m\left(U_{c}\right)} \int_{U_{c}} \nabla v(x+y) \mathrm{d} V(y)
$$

for each $x \in \Omega$. Then applying Jensen's inequality we obtain

$$
\int_{\Omega}|\nabla \omega(x)|^{n} \mathrm{~d} V(x) \leqslant \frac{1}{m\left(U_{c}\right)} \int_{U_{c}} \int_{\Omega}|\nabla v(x+y)|^{n} \mathrm{~d} V(x) \mathrm{d} V(y)
$$

The inner integral on the right hand side is majorized by

$$
\int_{\Omega_{c}}|\nabla v(x)|^{n} \mathrm{~d} V(x) \leqslant \frac{1}{(1-2 a)^{n}} \int_{\Omega_{c}}|\nabla u(x)|^{n} \mathrm{~d} V(x)
$$

for each y in U_{c}. Hence

$$
\int_{\Omega}|\nabla \omega|^{n} \mathrm{~d} V(x) \leqslant \frac{1}{(1-2 a)^{n}} \int_{\Omega_{c}}|\nabla u|^{n} \mathrm{~d} V(x)
$$

and

$$
C\left[\Omega, E_{0}, E_{1}\right] \leqslant \frac{1}{(1-2 a)^{n}} \int_{\Omega_{c}}|\nabla u|^{n} \mathrm{~d} V(x)
$$

Letting $a \rightarrow 0$ we have

$$
\begin{equation*}
C\left[\Omega, E_{0}, E_{1}\right] \leqslant \int_{\Omega}|\nabla u|^{n} \mathrm{~d} V(x) \tag{9}
\end{equation*}
$$

Because the infimum on the right hand side of (7) is over a wider class of functions than on the left hand side we have the inequality

$$
\begin{equation*}
C\left[\Omega, E_{0}, E_{1}\right] \geqslant \inf _{u} \int_{\Omega}|\nabla u|^{n} \mathrm{~d} V(x) . \tag{10}
\end{equation*}
$$

By (9) and (10) we have the desired conclusion.
Theorem 2.1. If Ω is a bounded domain whose boundary consists of a finite number of C^{1} hypersurfaces, and if E_{0} and E_{1} are disjoint subsets of the boundary of Ω consisting of a finite number of closed hypersurfaces, then we have

$$
\begin{equation*}
\bmod _{\Omega}(\Gamma)=\inf _{f} \frac{V(\Omega, f)}{L(\Gamma, f)^{n}}=C\left[\Omega, E_{0}, E_{1}\right] \tag{11}
\end{equation*}
$$

where f is any metric in Ω and Γ is the family of Jordan arcs joining E_{0} and E_{1} inside Ω.

Proof. It follows by Propositions 2.1, 2.2, 2.3 and 2.4.
The case $n=2$ of the above Theorem enables us to give a short proof of Theorem 1.1. In fact, the proof immediately follows from Theorem 1.3 [6], which gives a solution of a mixed Dirichlet-Neuman problem.

The proof of Theorem 1.3 in Courant's book [6] is based on using minimizing sequences. We believe that we can use minimizing sequences as Gehring in [2] to show the existence of the extremal admissible function $u \in \mathrm{E}\left(\Omega, E_{0}, E_{1}\right)$ such that

$$
C\left[\Omega, E_{0}, E_{1}\right]=\int_{\Omega}|\nabla u|^{n} \mathrm{~d} V
$$

References

[1] L. V. Ahlfors: Conformal Invariants. McGraw-Hill Book Company, 1973.
[2] F. W. Gehring: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 383-393.
[3] F. W. Gehring: Quasiconformal mappings in space. Bull. Amer. Math. Soc. 69 (1963).
[4] W. P. Ziemer: Extremal lenght and p-capacity. Michigan Math. J. 16 (1969), 43-51.
[5] K. Strebel: Quadratic Differentials. Springer-Verlag, 1984.
[6] R. Courant: Dirichlet's Principle, Conformal Mappings and Minimal Surfaces. New York, Interscience Publishers, Inc., 1950.
[7] F. P. Gardiner: Teichmüller Theory and Quadratic Differentials. New York, A Wi-ley-Interscience Publication, 1987.
[8] M. Berger, B. Gostiaux: Differential Geometry: Manifolds, Curves and Surfaces. Springer-Verlag, 1987.
[9] J.Väisälä: On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A 298 (1961), 1-36.
[10] C. Loewner: On the conformal capacity in space. J. Math. Mech. 8 (1959), 411-414.
Authors' addresses: I. Anić, M. Mateljević, Faculty of Mathematics, University of Belgrade, Studentski trg 16, pp 550, Belgrade, Yugoslavia, e-mails: ianic@matf. bg.ac.yu, miodrag@matf.bg.ac.yu; D. Sarić, City University of New York, e-mail: dsaric@email.gc.cuny.edu.

